In Vivo Regulation of the Zebrafish Endoderm Progenitor Niche by T-Box Transcription Factors
نویسندگان
چکیده
T-box transcription factors T/Brachyury homolog A (Ta) and Tbx16 are essential for correct mesoderm development in zebrafish. The downstream transcriptional networks guiding their functional activities are poorly understood. Additionally, important contributions elsewhere are likely masked due to redundancy. Here, we exploit functional genomic strategies to identify Ta and Tbx16 targets in early embryogenesis. Surprisingly, we discovered they not only activate mesodermal gene expression but also redundantly regulate key endodermal determinants, leading to substantial loss of endoderm in double mutants. To further explore the gene regulatory networks (GRNs) governing endoderm formation, we identified targets of Ta/Tbx16-regulated homeodomain transcription factor Mixl1, which is absolutely required in zebrafish for endoderm formation. Interestingly, we find many endodermal determinants coordinately regulated through common genomic occupancy by Mixl1, Eomesa, Smad2, Nanog, Mxtx2, and Pou5f3. Collectively, these findings augment the endoderm GRN and reveal a panel of target genes underlying the Ta, Tbx16, and Mixl1 mutant phenotypes.
منابع مشابه
Zebrafish mnx1 controls cell fate choice in the developing endocrine pancreas.
The vertebrate endocrine pancreas has the crucial function of maintaining blood sugar homeostasis. This role is dependent upon the development and maintenance of pancreatic islets comprising appropriate ratios of hormone-producing cells. In all vertebrate models studied, an initial precursor population of Pdx1-expressing endoderm cells gives rise to separate endocrine and exocrine cell lineages...
متن کاملMaternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos.
Development of animal embryos before zygotic genome activation at the midblastula transition (MBT) is essentially supported by egg-derived maternal products. Nodal proteins are crucial signals for mesoderm and endoderm induction after the MBT. It remains unclear which maternal factors activate zygotic expression of nodal genes in the ventrolateral blastodermal margin of the zebrafish blastulas....
متن کاملRestricted expression of cdc25a in the tailbud is essential for formation of the zebrafish posterior body.
The vertebrate body forms from a multipotent stem cell-like progenitor population that progressively contributes newly differentiated cells to the most posterior end of the embryo. How the progenitor population balances proliferation and other cellular functions is unknown due to the difficulty of analyzing cell division in vivo. Here, we show that proliferation is compartmentalized at the post...
متن کاملS08-05 Regulation of microtubule organization by xMID is essential for maintaining tissue integrity in Xenopus neural tube closure
The kidney and vasculature are intimately linked functionally and during development, where nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms underlying the differentiation of kidney vs. blood/vascular lineages are unknown. The odd skipped related1 (osr1) gene encodes a zinc finger transcription factor that is e...
متن کاملDifferential regulation of epiboly initiation and progression by zebrafish Eomesodermin A.
The T-box transcription factor Eomesodermin (Eomes) has been implicated in patterning and morphogenesis in frog, fish and mouse. In zebrafish, one of the two Eomes homologs, Eomesa, has been implicated in dorsal-ventral patterning, epiboly and endoderm specification in experiments employing over-expression, dominant-negative constructs and antisense morpholino oligonucleotides. Here we report f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2017